$\int_{0}^{\frac{\pi}{2}} \frac{\cos ^{5} x d x}{\sin ^{5} x+\cos ^{5} x}$
Let $I=\int_{0}^{\frac{\pi}{2}} \frac{\cos ^{5} x}{\sin ^{5} x+\cos ^{5} x} d x$ ...(1)
$\Rightarrow I=\int_{0}^{\frac{\pi}{2}} \frac{\cos ^{5}\left(\frac{\pi}{2}-x\right)}{\sin ^{5}\left(\frac{\pi}{2}-x\right)+\cos ^{5}\left(\frac{\pi}{2}-x\right)} d x$ $\left(\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x\right)$
$\Rightarrow I=\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{5} x}{\sin ^{5} x+\cos ^{5} x} d x$ ...(2)
Adding (1) and (2), we obtain
$2 I=\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{5} x+\cos ^{5} x}{\sin ^{5} x+\cos ^{5} x} d x$
$\Rightarrow 2 I=\int_{0}^{\frac{\pi}{2}} 1 \cdot d x$
$\Rightarrow 2 I=[x]_{0}^{\frac{\pi}{2}}$
$\Rightarrow 2 I=\frac{\pi}{2}$
$\Rightarrow I=\frac{\pi}{4}$