Show that $f(x)=e^{\frac{1}{x}}, x \neq 0$ is a decreasing function for all $x \neq 0$.
Given:- Function $\mathrm{f}(\mathrm{x})=\mathrm{e}^{\frac{1}{x}}$
Theorem:- Let $f$ be a differentiable real function defined on an open interval $(a, b)$.
(i) If $f^{\prime}(x)>0$ for all $x \in(a, b)$, then $f(x)$ is increasing on $(a, b)$
(ii) If $f^{\prime}(x)<0$ for all $x \in(a, b)$, then $f(x)$ is decreasing on $(a, b)$
Algorithm:-
(i) Obtain the function and put it equal to $f(x)$
(ii) Find $f^{\prime}(x)$
(iii) Put $f^{\prime}(x)>0$ and solve this inequation.
For the value of $x$ obtained in (ii) $f(x)$ is increasing and for remaining points in its domain it is decreasing.
Here we have,
$f(x)=e^{\frac{1}{x}}$
$\Rightarrow f(x)=\frac{d}{d x}\left(e^{\frac{1}{x}}\right)$
$\Rightarrow f(x)=e^{\frac{1}{x}} \cdot\left(\frac{-1}{x^{2}}\right)$
$\Rightarrow f(x)=-\frac{e^{\frac{1}{x}}}{x^{2}}$
As given $x \in R, x \neq 0$
$\Rightarrow \frac{1}{x^{2}}>0$ and $e^{\frac{1}{x}}>0$
Their ratio is also greater than 0
$\Rightarrow \frac{e^{\frac{1}{x}}}{x^{2}}>0$
$\Rightarrow-\frac{e^{\frac{1}{x}}}{x^{2}}<0$; as by applying -ve sign change in comparision sign
$\Rightarrow f^{\prime}(x)<0$
Hence, condition for $f(x)$ to be decreasing
Thus $f(x)$ is decreasing for all $x \neq 0$