$(x+y) d y+(x-y) d x=0 ; y=1$ when $x=1$
$(x+y) d y+(x-y) d x=0$
$\Rightarrow(x+y) d y=-(x-y) d x$
$\Rightarrow \frac{d y}{d x}=\frac{-(x-y)}{x+y}$ $\ldots(1)$
Let $F(x, y)=\frac{-(x-y)}{x+y}$.
$\therefore F(\lambda x, \lambda y)=\frac{-(\lambda x-\lambda y)}{\lambda x-\lambda y}=\frac{-(x-y)}{x+y}=\lambda^{0} \cdot F(x, y)$
Therefore, the given differential equation is a homogeneous equation.
To solve it, we make the substitution as:
y = vx
$\Rightarrow \frac{d}{d x}(y)=\frac{d}{d x}(v x)$
$\Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$
Substituting the values of $y$ and $\frac{d y}{d x}$ in equation $(1)$, we get:
$v+x \frac{d v}{d x}=\frac{-(x-v x)}{x+v x}$
$\Rightarrow v+x \frac{d v}{d x}=\frac{v-1}{v+1}$
$\Rightarrow x \frac{d v}{d x}=\frac{v-1}{v+1}-v=\frac{v-1-v(v+1)}{v+1}$
$\Rightarrow x \frac{d v}{d x}=\frac{v-1-v^{2}-v}{v+1}=\frac{-\left(1+v^{2}\right)}{v+1}$
$\Rightarrow \frac{(v+1)}{1+v^{2}} d v=-\frac{d x}{x}$
$\Rightarrow\left[\frac{v}{1+v^{2}}+\frac{1}{1+v^{2}}\right] d v=-\frac{d x}{x}$
Integrating both sides, we get:
$\frac{1}{2} \log \left(1+v^{2}\right)+\tan ^{-1} v=-\log x+k$
$\Rightarrow \log \left(1+v^{2}\right)+2 \tan ^{-1} v=-2 \log x+2 k$
$\Rightarrow \log \left[\left(1+v^{2}\right) \cdot x^{2}\right]+2 \tan ^{-1} v=2 k$
$\Rightarrow \log \left[\left(1+\frac{y^{2}}{x^{2}}\right) \cdot x^{2}\right]+2 \tan ^{-1} \frac{y}{x}=2 k$
$\Rightarrow \log \left(x^{2}+y^{2}\right)+2 \tan ^{-1} \frac{y}{x}=2 k$ ...(2)
Now, $y=1$ at $x=1$.
$\Rightarrow \log 2+2 \tan ^{-1} 1=2 k$
$\Rightarrow \log 2+2 \times \frac{\pi}{4}=2 k$
$\Rightarrow \frac{\pi}{2}+\log 2=2 k$
Substituting the value of $2 k$ in equation (2), we get:
$\log \left(x^{2}+y^{2}\right)+2 \tan ^{-1}\left(\frac{y}{x}\right)=\frac{\pi}{2}+\log 2$
This is the required solution of the given differential equation.