$\frac{5 x+3}{\sqrt{x^{2}+4 x+10}}$
Let $5 x+3=A \frac{d}{d x}\left(x^{2}+4 x+10\right)+B$
$\Rightarrow 5 x+3=A(2 x+4)+B$
Equating the coefficients of x and constant term, we obtain
$2 A=5 \Rightarrow A=\frac{5}{2}$
$4 A+B=3 \Rightarrow B=-7$
$\therefore 5 x+3=\frac{5}{2}(2 x+4)-7$
$\Rightarrow \int \frac{5 x+3}{\sqrt{x^{2}+4 x+10}} d x=\int \frac{\frac{5}{2}(2 x+4)-7}{\sqrt{x^{2}+4 x+10}} d x$
$=\frac{5}{2} \int \frac{2 x+4}{\sqrt{x^{2}+4 x+10}} d x-7 \int \frac{1}{\sqrt{x^{2}+4 x+10}} d x$
Let $I_{1}=\int \frac{2 x+4}{\sqrt{x^{2}+4 x+10}} d x$ and $I_{2}=\int \frac{1}{\sqrt{x^{2}+4 x+10}} d x$
$\therefore \int \frac{5 x+3}{\sqrt{x^{2}+4 x+10}} d x=\frac{5}{2} I_{1}-7 I_{2}$ ...(1)
Then, $I_{1}=\int \frac{2 x+4}{\sqrt{x^{2}+4 x+10}} d x$
Let $x^{2}+4 x+10=t$
$\therefore(2 x+4) d x=d t$
$\Rightarrow I_{1}=\int \frac{d t}{t}=2 \sqrt{t}=2 \sqrt{x^{2}+4 x+10}$ ...(2)
$I_{2}=\int \frac{1}{\sqrt{x^{2}+4 x+10}} d x$
$=\int \frac{1}{\sqrt{\left(x^{2}+4 x+4\right)+6}} d x$
$=\int \frac{1}{(x+2)^{2}+(\sqrt{6})^{2}} d x$
$=\log \left|(x+2) \sqrt{x^{2}+4 x+10}\right|$ ...(3)
Using equations (2) and (3) in (1), we obtain
$\int \frac{5 x+3}{\sqrt{x^{2}+4 x+10}} d x=\frac{5}{2}\left[2 \sqrt{x^{2}+4 x+10}\right]-7 \log \left|(x+2)+\sqrt{x^{2}+4 x+10}\right|+C$
$=5 \sqrt{x^{2}+4 x+10}-7 \log (x+2)+\sqrt{x^{2}+4 x+10} \mid+C$