$y=e^{2 x}(a+b x)$
$y=e^{2 x}(a+b x)$ ...(1)
Differentiating both sides with respect to x, we get:
$y^{\prime}=2 e^{2 x}(a+b x)+e^{2 x} \cdot b$
$\Rightarrow y^{\prime}=e^{2 x}(2 a+2 b x+b)$ ...(2)
Multiplying equation (1) with 2 and then subtracting it from equation (2), we get:
$y^{\prime}-2 y=e^{2 x}(2 a+2 b x+b)-e^{2 x}(2 a+2 b x)$
$\Rightarrow y^{\prime}-2 y=b e^{2 x}$ ...(3)
Differentiating both sides with respect to x, we get:
$y^{\prime \prime}-2 y^{\prime}=2 b e^{2 x}$ (4)
Dividing equation (4) by equation (3), we get:
$\frac{y^{\prime \prime}-2 y^{\prime}}{y^{\prime}-2 y}=2$
$\Rightarrow y^{\prime \prime}-2 y^{\prime}=2 y^{\prime}-4 y$
$\Rightarrow y^{\prime \prime}-4 y^{\prime}+4 y=0$
This is the required differential equation of the given curve.