Show that $f(x)=\sin x-\cos x$ is an increasing function on $(-\pi / 4, \pi / 4) ?$
we have,
$f(x)=\sin x-\cos x$
$f^{\prime}(x)=\cos x+\sin x$
$=\sqrt{2}\left(\frac{1}{\sqrt{2}} \cos x+\frac{1}{\sqrt{2}} \sin x\right)$
$=\sqrt{2}\left(\frac{\sin \pi}{4} \cos x+\frac{\cos \pi}{4} \sin x\right)$
$=\sqrt{2} \sin \left(\frac{\pi}{4}+x\right)$
Now,
$x \in\left(-\frac{\pi}{4}, \frac{\pi}{4}\right)$
$\Rightarrow-\frac{\pi}{4} $\Rightarrow 0<\frac{\pi}{4}+x<\frac{\pi}{2}$ $\Rightarrow \sin 0^{\circ}<\sin \left(\frac{\pi}{4}+x\right)<\sin \frac{\pi}{2}$ $\Rightarrow 0<\sin \left(\frac{\pi}{4}+x\right)<1$ $\Rightarrow \sqrt{2} \sin \left(\frac{\pi}{4}+x\right)>0$ $\Rightarrow f^{\prime}(x)>0$ Hence, $f(x)$ is an increasing function on $(-\pi / 4, \pi / 4)$