Show that

Question:

$\int_{0}^{\pi}\left(\sin ^{2} \frac{x}{2}-\cos ^{2} \frac{x}{2}\right) d x$

Solution:

Let $I=\int_{0}^{\pi}\left(\sin ^{2} \frac{x}{2}-\cos ^{2} \frac{x}{2}\right) d x$

$=-\int_{0}^{\pi}\left(\cos ^{2} \frac{x}{2}-\sin ^{2} \frac{x}{2}\right) d x$

$=-\int_{0}^{\pi} \cos x d x$

$\int \cos x d x=\sin x=\mathrm{F}(x)$

By second fundamental theorem of calculus, we obtain

$I=\mathrm{F}(\pi)-\mathrm{F}(0)$

$=\sin \pi-\sin 0$

$=0$

Leave a comment