Question:
$y \log y d x-x d y=0$
Solution:
The given differential equation is:
$y \log y d x-x d y=0$
$\Rightarrow y \log y d x=x d y$
$\Rightarrow \frac{d y}{y \log y}=\frac{d x}{x}$
Integrating both sides, we get:
$\int \frac{d y}{y \log y}=\int \frac{d x}{x}$ ...(1)
Let $\log y=t$.
$\therefore \frac{d}{d y}(\log y)=\frac{d t}{d y}$
$\Rightarrow \frac{1}{y}=\frac{d t}{d y}$
$\Rightarrow \frac{1}{y} d y=d t$
Substituting this value in equation (1), we get:
$\int \frac{d t}{t}=\int \frac{d x}{x}$
$\Rightarrow \log t=\log x+\log \mathrm{C}$
$\Rightarrow \log (\log y)=\log \mathrm{C} x$
$\Rightarrow \log y=\mathrm{C} x$
$\Rightarrow y=e^{\mathrm{Cx}}$
This is the required general solution of the given differential equation.