Show that

Question:

$e^{2 x} \sin x$

Solution:

Let $I=\int e^{2 x} \sin x d x$   ...(1)

Integrating by parts, we obtain

$I=\sin x \int e^{2 x} d x-\int\left\{\left(\frac{d}{d x} \sin x\right) \int e^{2 x} d x\right\} d x$

$\Rightarrow I=\sin x \cdot \frac{e^{2 x}}{2}-\int \cos x \cdot \frac{e^{2 x}}{2} d x$

$\Rightarrow I=\frac{e^{2 x} \sin x}{2}-\frac{1}{2} \int e^{2 x} \cos x d x$

Again integrating by parts, we obtain

$I=\frac{e^{2 x} \cdot \sin x}{2}-\frac{1}{2}\left[\cos x \int e^{2 x} d x-\int\left\{\left(\frac{d}{d x} \cos x\right) \int e^{2 x} d x\right\} d x\right.$

$\Rightarrow I=\frac{e^{2 x} \sin x}{2}-\frac{1}{2}\left[\cos x \cdot \frac{e^{2 x}}{2}-\int(-\sin x) \frac{e^{2 x}}{2} d x\right]$

$\Rightarrow I=\frac{e^{2 x} \cdot \sin x}{2}-\frac{1}{2}\left[\frac{e^{2 x} \cos x}{2}+\frac{1}{2} \int e^{2 x} \sin x d x\right]$

$\Rightarrow I=\frac{e^{2 x} \sin x}{2}-\frac{e^{2 x} \cos x}{4}-\frac{1}{4} I$    [From (1)]

$\Rightarrow I+\frac{1}{4} I=\frac{e^{2 x} \cdot \sin x}{2}-\frac{e^{2 x} \cos x}{4}$

$\Rightarrow \frac{5}{4} I=\frac{e^{2 x} \sin x}{2}-\frac{e^{2 x} \cos x}{4}$

$\Rightarrow I=\frac{4}{5}\left[\frac{e^{2 x} \sin x}{2}-\frac{e^{2 x} \cos x}{4}\right]+\mathrm{C}$

$\Rightarrow I=\frac{e^{2 x}}{5}[2 \sin x-\cos x]+\mathrm{C}$

 

Leave a comment