$y^{\prime}=\frac{x+y}{x}$
The given differential equation is:
$y^{\prime}=\frac{x+y}{x}$
$\Rightarrow \frac{d y}{d x}=\frac{x+y}{x}$ ...(1)
Let $F(x, y)=\frac{x+y}{x}$.
Now, $F(\lambda x, \lambda y)=\frac{\lambda x+\lambda y}{\lambda x}=\frac{x+y}{x}=\lambda^{0} F(x, y)$
Thus, the given equation is a homogeneous equation.
To solve it, we make the substitution as:
y = vx
Differentiating both sides with respect to x, we get:
$\frac{d y}{d x}=v+x \frac{d v}{d x}$
Substituting the values of $y$ and $\frac{d y}{d x}$ in equation (1), we get:
$v+x \frac{d v}{d x}=\frac{x+v x}{x}$
$\Rightarrow v+x \frac{d v}{d x}=1+v$
$x \frac{d v}{d x}=1$
$\Rightarrow d v=\frac{d x}{x}$
Integrating both sides, we get:
$v=\log x+\mathrm{C}$
$\Rightarrow \frac{y}{x}=\log x+\mathrm{C}$
$\Rightarrow y=x \log x+\mathrm{C} x$
This is the required solution of the given differential equation.