$\int_{0}^{\frac{\pi}{4}} \log (1+\tan x) d x$
Let $I=\int_{0}^{\frac{\pi}{4}} \log (1+\tan x) d x$ ...(1)
$\therefore I=\int_{0}^{\frac{\pi}{4}} \log \left[1+\tan \left(\frac{\pi}{4}-x\right)\right] d x$ $\left(\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x\right)$
$\Rightarrow I=\int_{0}^{\frac{\pi}{4}} \log \left\{1+\frac{\tan \frac{\pi}{4}-\tan x}{1+\tan \frac{\pi}{4} \tan x}\right\} d x$
$\Rightarrow I=\int_{0}^{\frac{\pi}{4}} \log \left\{1+\frac{1-\tan x}{1+\tan }\right\} d x$
$\Rightarrow I=\int_{0}^{\frac{\pi}{4}} \log \frac{2}{(1+\tan x)} d x$
$\Rightarrow I=\int_{0}^{\frac{\pi}{4}} \log 2 d x-\int_{0}^{\frac{\pi}{4}} \log (1+\tan x) d x$
$\Rightarrow I=\int_{0}^{\frac{\pi}{4}} \log 2 d x-I$ $[$ From (1) $]$
$\Rightarrow 2 I=[x \log 2]_{0}^{\frac{\pi}{4}}$
$\Rightarrow 2 I=\frac{\pi}{4} \log 2$
$\Rightarrow I=\frac{\pi}{8} \log 2$