Question:
Show that $f(x)=\log _{a} x, 00$.
Solution:
Given:- Function $f(x)=\log _{a} x, 0
Theorem:- Let $f$ be a differentiable real function defined on an open interval $(a, b)$. (i) If $f^{\prime}(x)>0$ for all $x \in(a, b)$, then $f(x)$ is increasing on $(a, b)$ (ii) If $f^{\prime}(x)<0$ for all $x \in(a, b)$, then $f(x)$ is decreasing on $(a, b)$ Algorithm:- (i) Obtain the function and put it equal to $f(x)$ (ii) Find $f^{\prime}(x)$ (iii) Put $f^{\prime}(x)>0$ and solve this inequation. For the value of $x$ obtained in (ii) $f(x)$ is increasing and for remaining points in its domain it is decreasing. Here we have, $f(x)=\log _{a} x, 0
$\Rightarrow f(x)=\frac{d}{d x}\left(\log _{a} x\right)$ $\Rightarrow f(x)=\frac{1}{x \log a}$