Question:
$\frac{2 x}{\left(x^{2}+1\right)\left(x^{2}+3\right)}$
Solution:
$\frac{2 x}{\left(x^{2}+1\right)\left(x^{2}+3\right)}$
Let $x^{2}=t \Rightarrow 2 x d x=d t$
$\therefore \int \frac{2 x}{\left(x^{2}+1\right)\left(x^{2}+3\right)} d x=\int \frac{d t}{(t+1)(t+3)}$ ...(1)
Let $\frac{1}{(t+1)(t+3)}=\frac{A}{(t+1)}+\frac{B}{(t+3)}$
$1=A(t+3)+B(t+1)$ ...(1)
Substituting t = −3 and t = −1 in equation (1), we obtain
$\Rightarrow \int \frac{2 x}{\left(x^{2}+1\right)\left(x^{2}+3\right)} d x=\int\left\{\frac{1}{2(t+1)}-\frac{1}{2(t+3)}\right\} d t$
$=\frac{1}{2} \log |(t+1)|-\frac{1}{2} \log |t+3|+\mathrm{C}$
$=\frac{1}{2} \log \left|\frac{t+1}{t+3}\right|+\mathrm{C}$
$=\frac{1}{2} \log \left|\frac{x^{2}+1}{x^{2}+3}\right|+\mathrm{C}$