Show that

Question:

$\int_{2}^{3} \frac{1}{x} d x$

Solution:

Let $I=\int_{2}^{3} \frac{1}{x} d x$

$\int \frac{1}{x} d x=\log |x|=\mathrm{F}(x)$

By second fundamental theorem of calculus, we obtain

$\begin{aligned} I &=\mathrm{F}(3)-\mathrm{F}(2) \\ &=\log |3|-\log |2|=\log \frac{3}{2} \end{aligned}$

 

Leave a comment