Question:
Show that $\lim _{x \rightarrow 0} \frac{1}{x}$ does not exist.
Solution:
Let $x=0+h$ for $x$ tending to $0^{+}$
Since x→ 0, h also tends to 0
Right Hand Limit(R.H.L.):
$\lim _{x \rightarrow 0^{+}} f(x)$
$=\lim _{x \rightarrow 0^{+}} \frac{1}{x}$
$=\lim _{h \rightarrow 0^{+}} \frac{1}{0+h}$
$=\lim _{h \rightarrow 0^{+}} \frac{1}{+h}$
$=+\frac{1}{0}$
$=+\infty$
Let $x=0$-h for $x$ tending to $0^{-}$
Since $x \rightarrow 0$, h also tends to 0 .
Left Hand Limit(L.H.L.):
$=\lim _{x \rightarrow 0^{-}} f(x)$
$=\lim _{x \rightarrow 0^{-}} \frac{1}{x}$
$=\lim _{h \rightarrow 0^{-}} \frac{1}{0-h}$
$=\lim _{h \rightarrow 0^{-}} \frac{1}{-h}$
$=-\frac{1}{0}$
$=-\infty$
Since,
$\lim _{x \rightarrow 0^{-}} f(x) \neq \lim _{x \rightarrow 0^{+}} f(x)$