Show that $A=\left[\begin{array}{ll}6 & 5 \\ 7 & 6\end{array}\right]$ satisfies the equation $x^{2}-12 x+1=O$. Thus, find $A^{-1}$.
$A=\left[\begin{array}{ll}6 & 5\end{array}\right.$
$\left.\begin{array}{ll}7 & 6\end{array}\right]$
$\therefore A^{2}=\left[\begin{array}{ll}71 & 60\end{array}\right.$
$\left.\begin{array}{ll}84 & 71\end{array}\right]$
If $I_{2}$ is the identity matrix of order 2, then
$A^{2}-12 A+I_{2}=\left[\begin{array}{ll}71 & 60\end{array}\right.$
$84 \quad 71]-12\left[\begin{array}{ll}6 & 5\end{array}\right.$
$\left.\begin{array}{ll}7 & 6\end{array}\right]+\left[\begin{array}{ll}1 & 0\end{array}\right.$
$\left.\begin{array}{ll}0 & 1\end{array}\right]$
$\Rightarrow A^{2}-12 A+I_{2}=[71-72+1 \quad 60-60+0$
$84-84+0 \quad 71-72+1]$
$\Rightarrow A^{2}-12 A+I_{2}=0$
Thus, $A$ satisfies $x^{2}-12 x+1=0$.
Now,
$A^{2}-12 A+I_{2}=0$
$\Rightarrow I_{2}=12 A-A^{2}$
$\Rightarrow A^{-1} I_{2}=A^{-1}\left(12 A-A^{2}\right)$ $\left[\right.$ Pre $-$ multiplying both sides by $\left.A^{-1}\right]$
$\Rightarrow A^{-1}=12 I_{2}-A$
$\Rightarrow A^{-1}=12\left[\begin{array}{ll}1 & 0\end{array}\right.$
$0 \quad 1]-\left[\begin{array}{ll}6 & 5\end{array}\right.$
$\left.\begin{array}{ll}7 & 6\end{array}\right]$
$\Rightarrow A^{-1}=\left[\begin{array}{ll}12-6 & 0-5\end{array}\right.$
$0-7 \quad 12-6]$
$\Rightarrow A^{-1}=\left[\begin{array}{ll}6 & -5\end{array}\right.$
$\left.\begin{array}{ll}-7 & 6\end{array}\right]$