Question:
$\int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \operatorname{cosec} x d x$
Solution:
Let $I=\int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \operatorname{cosec} x d x$
$\int \operatorname{cosec} x d x=\log |\operatorname{cosec} x-\cot x|=\mathrm{F}(x)$
By second fundamental theorem of calculus, we obtain
$I=\mathrm{F}\left(\frac{\pi}{4}\right)-\mathrm{F}\left(\frac{\pi}{6}\right)$
$=\log \left|\operatorname{cosec} \frac{\pi}{4}-\cot \frac{\pi}{4}\right|-\log \left|\operatorname{cosec} \frac{\pi}{6}-\cot \frac{\pi}{6}\right|$
$=\log |\sqrt{2}-1|-\log |2-\sqrt{3}|$
$=\log \left(\frac{\sqrt{2}-1}{2-\sqrt{3}}\right)$