Show that

Question:

$\int_{-1}^{1}(x+1) d x$

Solution:

Let $I=\int_{-1}^{1}(x+1) d x$

$\int(x+1) d x=\frac{x^{2}}{2}+x=\mathrm{F}(x)$

By second fundamental theorem of calculus, we obtain

$I=\mathrm{F}(1)-\mathrm{F}(-1)$

$=\left(\frac{1}{2}+1\right)-\left(\frac{1}{2}-1\right)$

$=\frac{1}{2}+1-\frac{1}{2}+1$

$=2$

Leave a comment