Show that

Question:

$\int_{0}^{\frac{\pi}{4}} \tan x d x$

Solution:

Let$I=\int_{0}^{\frac{\pi}{4}} \tan x d x$

$\int \tan x d x=-\log |\cos x|=\mathrm{F}(x)$

By second fundamental theorem of calculus, we obtain

$I=\mathrm{F}\left(\frac{\pi}{4}\right)-\mathrm{F}(0)$

$=-\log \left|\cos \frac{\pi}{4}\right|+\log |\cos 0|$

$=-\log \left|\frac{1}{\sqrt{2}}\right|+\log |1|$

$=-\log (2)^{-\frac{1}{2}}$

$=\frac{1}{2} \log 2$

Leave a comment