Show that $f(x)=\cos ^{2} x$ is a decreasing function on $(0, \pi / 2)$.
Given:- Function $f(x)=\cos ^{2} x$
Theorem:- Let $\mathrm{f}$ be a differentiable real function defined on an open interval $(\mathrm{a}, \mathrm{b})$.
(i) If $f^{\prime}(x)>0$ for all $x \in(a, b)$, then $f(x)$ is increasing on $(a, b)$
(ii) If $f^{\prime}(x)<0$ for all $x \in(a, b)$, then $f(x)$ is decreasing on $(a, b)$
Algorithm:-
(i) Obtain the function and put it equal to $f(x)$
(ii) Find $f^{\prime}(x)$
(iii) Put $f^{\prime}(x)>0$ and solve this inequation.
For the value of $x$ obtained in (ii) $f(x)$ is increasing and for remaining points in its domain it is decreasing.
Here we have,
$f(x)=\cos ^{2} x$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=\frac{\mathrm{d}}{\mathrm{dx}}\left(\cos ^{2} \mathrm{x}\right)$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=3 \cos \mathrm{x}(-\sin \mathrm{x})$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=-2 \sin (\mathrm{x}) \cos (\mathrm{x})$
$\Rightarrow f^{\prime}(x)=-\sin 2 x ;$ as $\sin 2 A=2 \sin A \cos A$
Now, as given
$X \in\left(0, \frac{\pi}{2}\right)$
$\Rightarrow 2 x \in(0, \pi)$
$\Rightarrow \operatorname{Sin}(2 x)>0$
$\Rightarrow-\operatorname{Sin}(2 x)<0$
$\Rightarrow f^{\prime}(x)<0$
hence, Condition for $f(x)$ to be decreasing
Thus $f(x)$ is decreasing on interval $\left(0, \frac{\pi}{2}\right)$
Hence proved