Question:
$\frac{d y}{d x}=\sqrt{4-y^{2}}(-2
Solution:
The given differential equation is:
$\frac{d y}{d x}=\sqrt{4-y^{2}}$
Separating the variables, we get:
$\Rightarrow \frac{d y}{\sqrt{4-y^{2}}}=d x$
Now, integrating both sides of this equation, we get:
$\int \frac{d y}{\sqrt{4-y^{2}}}=\int d x$
$\Rightarrow \sin ^{-1} \frac{y}{2}=x+\mathrm{C}$
$\Rightarrow \frac{y}{2}=\sin (x+\mathrm{C})$
$\Rightarrow y=2 \sin (x+\mathrm{C})$
This is the required general solution of the given differential equation.