Show that $x=-\frac{b c}{a d}$ is a solution of the quadratic equation $a d^{2}\left(\frac{a x}{b}+\frac{2 c}{d}\right) x+b c^{2}=0$.
LHS;
Consider the quadratic equation;
$a d^{2}\left(\frac{a x}{b}+\frac{2 c}{d}\right) x+b c^{2}=0$
Put $x=-\frac{b c}{a d}$ in the given equation.
$a d^{2}\left[\frac{a\left(-\frac{b c}{a d}\right)}{b}+\frac{2 c}{d}\right]\left(-\frac{b c}{a d}\right)+b c^{2}$
$=\frac{a d^{2}}{b d}\left[a d\left(-\frac{b c}{a d}\right)+2 b c\right]\left(-\frac{b c}{a d}\right)+b c^{2}$
$=\frac{a d^{2}}{b d}[-b c+2 b c]\left(-\frac{b c}{a d}\right)+b c^{2}$
$=\frac{a d^{2}}{b d}(b c)\left(-\frac{b c}{a d}\right)+b c^{2}$
$=-\frac{a b^{2} c^{2} d^{2}}{a b d^{2}}+b c^{2}$
$=-b c^{2}+b c^{2}$
$=0=\mathrm{RHS}$
Hence, $x=-\frac{b c}{a d}$ is a solution to the given quadratic equation.