Show that

Question:

Show that $f(x)=\tan ^{-1} x-x$ is a decreasing function on $R$ ?

Solution:

we have,

$f(x)=\tan ^{-1} x-x$

$f^{\prime}(x)=\frac{1}{1+x^{2}}-1$

$=-\frac{x^{2}}{1+x^{2}}$

Now,

$\mathrm{X} \in \mathrm{R}$

$\Rightarrow x^{2}>0$ and $1+x^{2}>0$

$\Rightarrow \frac{x^{2}}{1+x^{2}}>0$

$\Rightarrow-\frac{x^{2}}{1+x^{2}}<0$

$\Rightarrow f^{\prime}(x)<0$

Hence, $f(x)$ is an decreasing function for $R$

Leave a comment