Question:
Show that $(1-i)^{n}\left(1-\frac{1}{i}\right)^{n}=2^{n}$ for all n N.
Solution:
To show: $(1-i)^{n}\left(1-\frac{1}{i}\right)^{n}=2^{n}$
Taking LHS,
$(1-i)^{n}\left(1-\frac{1}{i}\right)^{n}$
$=(1-i)^{n}\left(1-\frac{1}{i} \times \frac{i}{i}\right)^{n} \quad$ [rationalize]
$=(1-i)^{n}\left(1-\frac{i}{i^{2}}\right)^{n}$
$=(1-i)^{n}\left(1-\frac{i}{-1}\right)^{n}\left[\because i^{2}=-1\right]$
$=(1-i)^{n}(1+i)^{n}$
$=[(1-i)(1+i)]^{n}$
$=\left[(1)^{2}-(i)^{2}\right]^{n}\left[(a+b)(a-b)=a^{2}-b^{2}\right]$
$=\left(1-i^{2}\right)^{n}$
$=[1-(-1)]^{n}\left[\because i^{2}=-1\right]$
$=(2)^{n}$
$=2^{n}$
$=$ RHS
Hence Proved