Show that $f(x)=\log \sin x$ is increasing on $(0, \pi / 2)$ and decreasing on $(\pi / 2, \pi)$.
Given:- Function $f(x)=\log \sin x$
Theorem:- Let $f$ be a differentiable real function defined on an open interval $(a, b)$.
(i) If $f^{\prime}(x)>0$ for all $x \in(a, b)$, then $f(x)$ is increasing on $(a, b)$
(ii) If $f^{\prime}(x)<0$ for all $x \in(a, b)$, then $f(x)$ is decreasing on $(a, b)$
Algorithm:-
(i) Obtain the function and put it equal to $f(x)$
(ii) Find $f^{\prime}(x)$
(iii) Put $f^{\prime}(x)>0$ and solve this inequation.
For the value of $x$ obtained in (ii) $f(x)$ is increasing and for remaining points in its domain it is decreasing.
Here we have,
$\Rightarrow \mathrm{f}(\mathrm{x})=\frac{\mathrm{d}}{\mathrm{dx}}(\log \sin \mathrm{x})$
$\Rightarrow \mathrm{f}(\mathrm{x})=\frac{1}{\sin \mathrm{x}} \times \cos \mathrm{x}$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=\cot (\mathrm{x})$
Taking different region from 0 to $\pi$
a) let $x \in\left(0, \frac{\pi}{2}\right)$
$\Rightarrow \cot (x)>0$
$\Rightarrow f^{\prime}(x)>0$
Thus $f(x)$ is increasing in $\left(0, \frac{\pi}{2}\right)$
b) $\operatorname{let} \mathrm{x} \in\left(\frac{\pi}{2}, \pi\right)$
$\Rightarrow \cot (x)<0$
$\Rightarrow f^{\prime}(x)<0$
Thus $f(x)$ is decreasing in $\left(\frac{\pi}{2}, \pi\right)$
Hence proved