Show that

Question:

$\frac{\cos x}{\sqrt{4-\sin ^{2} x}}$

Solution:

$\frac{\cos x}{\sqrt{4-\sin ^{2} x}}$

Let $\sin x=t \Rightarrow \cos x d x=d t$

$\Rightarrow \int \frac{\cos x}{\sqrt{4-\sin ^{2} x}} d x=\int \frac{d t}{\sqrt{(2)^{2}-(t)^{2}}}$

$=\sin ^{-1}\left(\frac{t}{2}\right)+\mathrm{C}$

$=\sin ^{-1}\left(\frac{\sin x}{2}\right)+\mathrm{C}$

Leave a comment