Question:
Roma borrowed Rs 64000 from a bank for $1 \frac{1}{2}$ years at the rate of $10 \%$ per annum. Compute the total compound interest payable by Roma after $1 \frac{1}{2}$ years, if the interest is compounded half-yearly.
Solution:
Given:
$\mathrm{P}=\mathrm{Rs} 64,000$
$\mathrm{R}=10 \%$ p. a.
$\mathrm{n}=1.5$ years
$\mathrm{A}=\mathrm{P}\left(1+\frac{\mathrm{R}}{200}\right)^{2 \mathrm{n}}$
$=64,000\left(1+\frac{10}{200}\right)^{3}$
$=64,000(1.05)^{3}$
$=\mathrm{Rs} 74,088$
Now,
$\mathrm{CI}=\mathrm{A}-\mathrm{P}$
$=\mathrm{Rs} 74,088-\mathrm{Rs} 64,000$
$=\mathrm{Rs} 10,088$