Rolle's theorem is applicable in case of $\phi(x)=a^{\sin x}, a>a$ in
(a) any interval
(b) the interval [0, π]
(c) the interval (0, π/2)
(d) none of these
(b) the interval $[0, \pi]$
The given function is $\phi(x)=a^{\sin x}$, where $a>0$.
Differentiating the given function with respect to x, we get
$f^{\prime}(x)=\log a\left(\cos x a^{\sin x}\right)$
$\Rightarrow f^{\prime}(c)=\log a\left(\cos c a^{\sin c}\right)$
Let $f^{\prime}(c)=0$
$\Rightarrow \log a\left(\cos c a^{\sin c}\right)=0$
$\Rightarrow \cos c a^{\sin c}=0$
$\Rightarrow \cos c=0$
$\Rightarrow c=\frac{\pi}{2}$
$\therefore c \in(0, \pi)$
Also, the given function is derivable and hence continuous on the interval $[0, \pi]$.
Hence, the Rolle's theorem is applicable on the given function in the interval $[0, \pi]$.