Resolve each of the following quadratic trinomial into factor:
7x2 − 19x − 6
The given expression is $7 \mathrm{x}^{2}-19 \mathrm{x}-6$. (Coefficient of $\mathrm{x}^{2}=7$, coefficient of $\mathrm{x}=-19$ and constant term $=$ $-6)$
We will split the coefficient of $\mathrm{x}$ into two parts such that their sum is $-19$ and their product equals the product of the coefficient of $\mathrm{x}^{2}$ and the constant term, i.e., $7 \times(-6)=-42$.
Now,
$(-21)+2=-19$
and
$(-21) \times 2=-42$
Replacing the middle term $-19 x$ by $-21 x+2 x$, we have :
$7 \mathrm{x}^{2}-19 \mathrm{x}-6=7 \mathrm{x}^{2}-21 \mathrm{x}+2 \mathrm{x}-6$
$=\left(7 \mathrm{x}^{2}-21 \mathrm{x}\right)+(2 \mathrm{x}-6)$
$=7 \mathrm{x}(\mathrm{x}-3)+2(\mathrm{x}-3)$
$=(7 \mathrm{x}+2)(\mathrm{x}-3)$