Resolve each of the following quadratic trinomial into factor:
3x2 + 10x + 3
The given expression is $3 \mathrm{x}^{2}+10 \mathrm{x}+3 . \quad$ (Coefficient of $\mathrm{x}^{2}=3$, coefficient of $\mathrm{x}=10$ and constant term $=3$ )
We will split the coefficient of $\mathrm{x}$ into two parts such that their sum is 10 and their product equals the product of the coefficient of $\mathrm{x}^{2}$ and the constant term, i. e., $3 \times 3=9$.
Now,
$9+1=10$
and
$9 \times 1=9$
Replacing the middle term $10 \mathrm{x}$ by $9 \mathrm{x}+\mathrm{x}$, we have:
$3 \mathrm{x}^{2}+10 \mathrm{x}+3=3 \mathrm{x}^{2}+9 \mathrm{x}+\mathrm{x}+3$
$=\left(3 \mathrm{x}^{2}+9 \mathrm{x}\right)+(\mathrm{x}+3)$
$=3 \mathrm{x}(\mathrm{x}+3)+(\mathrm{x}+3)$
$=(3 \mathrm{x}+1)(\mathrm{x}+3)$