Rekha deposited Rs 16000 in a foreign bank which pays interest at the rate of 20% per annum compounded quarterly,
Rekha deposited Rs 16000 in a foreign bank which pays interest at the rate of 20% per annum compounded quarterly, find the interest received by Rekha after one year.
Given:
$\mathrm{P}=\mathrm{Rs} 16,000$
$\mathrm{R}=20 \%$ p. a.
$\mathrm{n}=1$ year
We know that:
$\mathrm{A}=\mathrm{P}\left(1+\frac{\mathrm{R}}{100}\right)^{\mathrm{n}}$
When compounded quarterly, we have :
$\mathrm{A}=\mathrm{P}\left(1+\frac{\mathrm{R}}{400}\right)^{4 \mathrm{n}}$
$=\operatorname{Rs} 16,000\left(1+\frac{20}{400}\right)^{4}$
$=\operatorname{Rs} 16,000(1.05)^{4}$
$=\operatorname{Rs} 19,448.10$
Also,
$\mathrm{CI}=\mathrm{A}-\mathrm{P}$
$=\mathrm{Rs} 19,448.1-\mathrm{Rs} 16,000$
$=\mathrm{Rs} 19,448.1-\mathrm{Rs} 16,000$
$=\mathrm{Rs} 3,448.10$
Thus, the interest received by Rekha after one year is Rs $3,448.10$.