Rationalise the denominator of each of the following.
(i) $\frac{1}{\sqrt{7}}$
(ii) $\frac{\sqrt{5}}{2 \sqrt{3}}$
(iii) $\frac{1}{2+\sqrt{3}}$
(iv) $\frac{1}{\sqrt{5}-2}$
(v) $\frac{1}{5+3 \sqrt{2}}$
(vi) $\frac{1}{\sqrt{7}-\sqrt{6}}$
(vii) $\frac{4}{\sqrt{11}-\sqrt{7}}$
(viii) $\frac{1+\sqrt{2}}{2-\sqrt{2}}$
(ix) $\frac{3-2 \sqrt{2}}{3+2 \sqrt{2}}$
(i) $\frac{1}{\sqrt{7}}$
On multiplying the numerator and denominator of the given number by $\sqrt{7}$, we get:
$\frac{1}{\sqrt{7}}=\frac{1}{\sqrt{7}} \times \frac{\sqrt{7}}{\sqrt{7}}=\frac{\sqrt{7}}{7}$
(ii) $\frac{\sqrt{5}}{2 \sqrt{3}}$
On multiplying the numerator and denominator of the given number by $\sqrt{3}$, we get:
$\frac{\sqrt{5}}{2 \sqrt{3}}=\frac{\sqrt{5}}{2 \sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{15}}{6}$
(iii) $\frac{1}{2+\sqrt{3}}$
On multiplying the numerator and denominator of the given number by $\sqrt{3}$, we get:
$\frac{1}{2+\sqrt{3}}=\frac{1}{2+\sqrt{3}} \times \frac{2-\sqrt{3}}{2-\sqrt{3}}$
$=\frac{2-\sqrt{3}}{(2)^{2}-(\sqrt{3})^{2}}$
$=\frac{2-\sqrt{3}}{4-2}$
$=\frac{2-\sqrt{3}}{1}$
$=2-\sqrt{3}$
(iv) $\frac{1}{\sqrt{5}-2}$
On multiplying the numerator and denominator of the given number by $\sqrt{5}+2$, we get:
$\frac{1}{\sqrt{5}-2}=\frac{1}{\sqrt{5}-2} \times \frac{\sqrt{5}+2}{\sqrt{5}+2}$
$=\frac{\sqrt{5}+2}{(\sqrt{5})^{2}-(2)^{2}}$
$=\frac{\sqrt{5}+2}{5-4}$
$=\frac{\sqrt{5}+2}{1}$
$=\sqrt{5}+2$
(v) $\frac{1}{5+3 \sqrt{2}}$
On multiplying the numerator and denominator of the given number by $5-3 \sqrt{2}$, we get:
$\frac{1}{5+3 \sqrt{2}}=\frac{1}{5+3 \sqrt{2}} \times \frac{5-3 \sqrt{2}}{5-3 \sqrt{2}}$
$=\frac{5-3 \sqrt{2}}{(5)^{2}-(3 \sqrt{2})^{2}}$
$=\frac{5-3 \sqrt{2}}{25-18}$
$=\frac{5-3 \sqrt{2}}{7}$
(vi) $\frac{1}{\sqrt{7}-\sqrt{6}}$
Multiplying the numerator and denominator by $\sqrt{7}+\sqrt{6}$, we get
$\frac{1}{\sqrt{7}-\sqrt{6}}=\frac{1}{\sqrt{7}-\sqrt{6}} \times \frac{\sqrt{7}+\sqrt{6}}{\sqrt{7}+\sqrt{6}}$
$=\frac{\sqrt{7}+\sqrt{6}}{(\sqrt{7})^{2}-(\sqrt{6})^{2}}$
$=\frac{\sqrt{7}+\sqrt{6}}{7-6}$
$=\sqrt{7}+\sqrt{6}$
(vii) $\frac{4}{\sqrt{11}-\sqrt{7}}$
Multiplying the numerator and denominator by $\sqrt{11}+\sqrt{7}$, we get
$\frac{4}{\sqrt{11}-\sqrt{7}}=\frac{4}{\sqrt{11}-\sqrt{7}} \times \frac{\sqrt{11}+\sqrt{7}}{\sqrt{11}+\sqrt{7}}$
$=\frac{4(\sqrt{11}+\sqrt{7})}{(\sqrt{11})^{2}-(\sqrt{7})^{2}}$
$=\frac{4(\sqrt{11}+\sqrt{7})}{11-7}$
$=\sqrt{11}+\sqrt{7}$
(viii) $\frac{1+\sqrt{2}}{2-\sqrt{2}}$
Multiplying the numerator and denominator by $2+\sqrt{2}$, we get
$\frac{1+\sqrt{2}}{2-\sqrt{2}}=\frac{1+\sqrt{2}}{2-\sqrt{2}} \times \frac{2+\sqrt{2}}{2+\sqrt{2}}$
$=\frac{2+\sqrt{2}+2 \sqrt{2}+2}{(2)^{2}-(\sqrt{2})^{2}}$
$=\frac{4+3 \sqrt{2}}{4-2}$
$=\frac{4+3 \sqrt{2}}{2}$
(ix) $\frac{3-2 \sqrt{2}}{3+2 \sqrt{2}}$
Multiplying the numerator and denominator by $3-2 \sqrt{2}$, we get
$\frac{3-2 \sqrt{2}}{3+2 \sqrt{2}}=\frac{3-2 \sqrt{2}}{3+2 \sqrt{2}} \times \frac{3-2 \sqrt{2}}{3-2 \sqrt{2}}$
$=\frac{(3-2 \sqrt{2})^{2}}{(3)^{2}-(2 \sqrt{2})^{2}}$
$=\frac{9+8-12 \sqrt{2}}{9-8} \quad\left[(a-b)^{2}=a^{2}+b^{2}-2 a b\right]$
$=17-12 \sqrt{2}$