Rationalise the denominator in each of the following and hence evaluate by taking $\sqrt{2}=1.414, \sqrt{3}=1.732$ and $\sqrt{5}=2.236$ upto three places of decimal.
(i) $\frac{4}{\sqrt{3}}$
(ii) $\frac{6}{\sqrt{6}}$
(iii) $\frac{\sqrt{10}-\sqrt{5}}{2}$
(iv) $\frac{\sqrt{2}}{2+\sqrt{2}}$
(v) $\frac{1}{\sqrt{3}+\sqrt{2}}$
(i) Let $E=\frac{4}{\sqrt{3}}$
For rationalising the denominator, multiplying numerator and denominator by $\sqrt{3}$, we get
$E=\frac{4}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}=\frac{4 \sqrt{3}}{3}$
$=\frac{4}{3} \times 1.732=\frac{6.928}{3}=2.309$ [put $\sqrt{3}=1.732$ ]
(ii) Let $E=\frac{6}{\sqrt{6}}$
For rationalising the denominator, multiplying numerator and denominator by $\sqrt{6}$, we get
$E=\frac{6}{\sqrt{6}} \times \frac{\sqrt{6}}{\sqrt{6}}=\frac{6 \sqrt{6}}{6}=\sqrt{2} \times \sqrt{3}$
$=1.414 \times 1.732=2.449$ [put $\sqrt{2}=1.414$ and $\sqrt{3}=1.732$ ]
(iii) Let $E=\frac{\sqrt{10}-\sqrt{5}}{2}=\frac{\sqrt{5} \sqrt{2}-\sqrt{5}}{2}=\frac{\sqrt{5}(\sqrt{2}-1)}{2}$ $[\because \sqrt{10}=\sqrt{2} \cdot \sqrt{5}]$
$=\frac{2.236(1.414-1)}{2}=1.118 \times 0.414=0.46285 \cong 0.463$
(iv) Let $E=\frac{\sqrt{2}}{2+\sqrt{2}}$
For rationalising the denominator, multiplying numerator and denominator by $2-\sqrt{2}$, we get
$=\frac{\sqrt{2}}{2+\sqrt{2}} \times \frac{2-\sqrt{2}}{2-\sqrt{2}}=\frac{\sqrt{2}(2-\sqrt{2})}{(2)^{2}-(\sqrt{2})^{2}}$ [using identity, $(a-b)(a+b)=a^{2}-b^{2}$ ]
$=\frac{\sqrt{2} \times \sqrt{2}(\sqrt{2}-1)}{2}=\frac{2(\sqrt{2}-1)}{2}$
$=\sqrt{2}-1=1.414-1=0.414$ [put $\sqrt{2}=1.414$ ]
(v) Let $E=\frac{1}{\sqrt{3}+\sqrt{2}}$
For rationalising the denominator multiplying numerator and denominator by $\sqrt{3}-\sqrt{2}$, we get
$\frac{1}{\sqrt{3}+\sqrt{2}} \times \frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}-\sqrt{2}}=\frac{\sqrt{3}-\sqrt{2}}{(\sqrt{3})^{2}-(\sqrt{2})^{2}}$
[using identity, $(a-b)(a+b)=a^{2}-b^{2}$ ]
$=\frac{\sqrt{3}-\sqrt{2}}{3-2}=\sqrt{3}-\sqrt{2}$
$=1.732-1.414=0.318$ [put $\sqrt{3}=1.732$ and $\sqrt{2}=1.414$ ]