Prove the following trigonometric identities.
$(\operatorname{cosec} A-\sin A)(\sec A-\cos A)(\tan A+\cot A)=1$
We have to prove $(\operatorname{cosec} A-\sin A)(\sec A-\cos A)(\tan A+\cot A)=1$
We know that, $\sin ^{2} A+\cos ^{2} A=1$
So,
$(\operatorname{cosec} A-\sin A)(\sec A-\cos A)(\tan A+\cot A)$
$=\left(\frac{1}{\sin A}-\sin A\right)\left(\frac{1}{\cos A}-\cos A\right)\left(\frac{\sin A}{\cos A}+\frac{\cos A}{\sin A}\right)$
$=\left(\frac{1-\sin ^{2} A}{\sin A}\right)\left(\frac{1-\cos ^{2} A}{\cos A}\right)\left(\frac{\sin ^{2} A+\cos ^{2} A}{\sin A \cos A}\right)$
$=\left(\frac{\cos ^{2} A}{\sin A}\right)\left(\frac{\sin ^{2} A}{\cos A}\right)\left(\frac{1}{\sin A \cos A}\right)$
$=\frac{\sin ^{2} A \cos ^{2} A}{\sin ^{2} A \cos ^{2} A}$
$=1$