Question:
Prove the following trigonometric identities.
$\frac{\cos ^{2} \theta}{\sin \theta}-\operatorname{cosec} \theta+\sin \theta=0$
Solution:
We have to prove $\frac{\cos ^{2} \theta}{\sin \theta}-\operatorname{cosec} \theta+\sin \theta=0$
We know that, $\sin ^{2} \theta+\cos ^{2} \theta=1$
So,
$\frac{\cos ^{2} \theta}{\sin \theta}-\operatorname{cosec} \theta+\sin \theta=\left(\frac{\cos ^{2} \theta}{\sin \theta}-\operatorname{cosec} \theta\right)+\sin \theta$
$=\left(\frac{\cos ^{2} \theta}{\sin \theta}-\frac{1}{\sin \theta}\right)+\sin \theta$
$=\left(\frac{\cos ^{2} \theta-1}{\sin \theta}\right)+\sin \theta$
$=\left(\frac{-\sin ^{2} \theta}{\sin \theta}\right)+\sin \theta$
$=-\sin \theta+\sin \theta$
$=0$