Prove the following trigonometric identities.
$\frac{\tan A}{\left(1+\tan ^{2} A\right)^{2}}+\frac{\cot A}{\left(1+\cot ^{2} A\right)}=\sin A \cos A$
We have to prove $\frac{\tan A}{\left(1+\tan ^{2} A\right)^{2}}+\frac{\cot A}{\left(1+\cot ^{2} A\right)^{2}}=\sin A \cos A$
We know that, $\sin ^{2} A+\cos ^{2} A=1$.
So,
$\frac{\tan A}{\left(1+\tan ^{2} A\right)^{2}}+\frac{\cot A}{\left(1+\cot ^{2} A\right)^{2}}$
$=\frac{\tan A}{\left(\sec ^{2} A\right)^{2}}+\frac{\cot A}{\left(\operatorname{cosec}^{2} A\right)^{2}}$
$=\frac{\tan A}{\sec ^{4} A}+\frac{\cot A}{\operatorname{cosec}^{4} A}$
$=\frac{\frac{\sin A}{\cos A}}{\frac{1}{\cos ^{4} A}}+\frac{\frac{\cos A}{\sin A}}{\frac{1}{\sin ^{4} A}}$
$=\frac{\sin A \cos ^{4} A}{\cos A}+\frac{\cos A \sin ^{4} A}{\sin A}$
$=\sin A \cos ^{3} A+\cos A \sin ^{3} A$
$=\sin A \cos A\left(\cos ^{2} A+\sin ^{2} A\right)$
$=\sin A \cos A$
Hence proved.