Prove the following trigonometric identities.
If $\mathrm{T}_{n}=\sin ^{n} \theta+\cos ^{n} \theta$, prove that $\frac{\mathrm{T}_{3}-\mathrm{T}_{5}}{\mathrm{~T}_{1}}=\frac{\mathrm{T}_{5}-\mathrm{T}_{7}}{\mathrm{~T}_{3}}$
In the given question, we are given $T_{n}=\sin ^{n} \theta+\cos ^{n} \theta$
We need to prove $\frac{T_{3}-T_{5}}{T_{1}}=\frac{T_{5}-T_{7}}{T_{3}}$
Here L.H.S is
$\frac{T_{3}-T_{5}}{T_{1}}=\frac{\left(\sin ^{3} \theta+\cos ^{3} \theta\right)-\left(\sin ^{5} \theta+\cos ^{5} \theta\right)}{(\sin \theta+\cos \theta)}$
Now, solving the L.H.S, we get
$\frac{\left(\sin ^{3} \theta+\cos ^{3} \theta\right)-\left(\sin ^{5} \theta+\cos ^{5} \theta\right)}{(\sin \theta+\cos \theta)}=\frac{\sin ^{3} \theta-\sin ^{5} \theta+\cos ^{3} \theta-\cos ^{5} \theta}{\sin \theta+\cos \theta}$
$=\frac{\sin ^{3} \theta\left(1-\sin ^{2} \theta\right)+\cos ^{3} \theta\left(1-\cos ^{2} \theta\right)}{\sin \theta+\cos \theta}$
Further using the property $\sin ^{2} \theta+\cos ^{2} \theta=1$, we get
$\cos ^{2} \theta=1-\sin ^{2} \theta$
$\sin ^{2} \theta=1-\cos ^{2} \theta$
So,
$\frac{\sin ^{3} \theta\left(1-\sin ^{2} \theta\right)+\cos ^{3} \theta\left(1-\cos ^{2} \theta\right)}{\sin \theta+\cos \theta}=\frac{\sin ^{3} \theta \cos ^{2} \theta+\cos ^{3} \theta \sin ^{2} \theta}{\sin \theta+\cos \theta}$
$=\frac{\sin ^{2} \theta \cos ^{2} \theta(\sin \theta+\cos \theta)}{\sin \theta+\cos \theta}$
$=\sin ^{2} \theta \cos ^{2} \theta$
Now, solving the R.H.S, we get
$\frac{T_{5}-T_{7}}{T_{3}}=\frac{\left(\sin ^{5} \theta+\cos ^{5} \theta\right)-\left(\sin ^{7} \theta+\cos ^{7} \theta\right)}{\left(\sin ^{3} \theta+\cos ^{3} \theta\right)}$
So,
$\frac{\left(\sin ^{5} \theta+\cos ^{5} \theta\right)-\left(\sin ^{7} \theta+\cos ^{7} \theta\right)}{\left(\sin ^{3} \theta+\cos ^{3} \theta\right)}=\frac{\sin ^{5} \theta-\sin ^{7} \theta+\cos ^{5} \theta-\cos ^{7} \theta}{\sin ^{3} \theta+\cos ^{3} \theta}$
$=\frac{\sin ^{5} \theta\left(1-\sin ^{2} \theta\right)+\cos ^{5} \theta\left(1-\cos ^{2} \theta\right)}{\sin ^{3} \theta+\cos ^{3} \theta}$
Further using the property $\sin ^{2} \theta+\cos ^{2} \theta=1$, we get,
$\cos ^{2} \theta=1-\sin ^{2} \theta$
$\sin ^{2} \theta=1-\cos ^{2} \theta$
So,
$\frac{\sin ^{5} \theta\left(1-\sin ^{2} \theta\right)+\cos ^{5} \theta\left(1-\cos ^{2} \theta\right)}{\sin ^{3} \theta+\cos ^{3} \theta}=\frac{\sin ^{5} \theta \cos ^{2} \theta+\cos ^{5} \theta \sin ^{2} \theta}{\sin ^{3} \theta+\cos ^{3} \theta}$
$=\frac{\sin ^{2} \theta \cos ^{2} \theta\left(\sin ^{3} \theta+\cos ^{3} \theta\right)}{\sin ^{3} \theta+\cos ^{3} \theta}$
$=\sin ^{2} \theta \cos ^{2} \theta$
Hence proved.