Prove the following trigonometric identities.
$1+\frac{\cot ^{2} \theta}{1+\operatorname{cosec} \theta}=\operatorname{cosec} \theta$
In the given question, we need to prove $1+\frac{\cot ^{2} \theta}{1+\operatorname{cosec} \theta}=\operatorname{cosec} \theta$
Using $\cot \theta=\frac{\cos \theta}{\sin \theta}$ and $\operatorname{cosec} \theta=\frac{1}{\sin \theta}$, we get
$1+\frac{\cot ^{2} \theta}{1+\operatorname{cosec} \theta}=\frac{1+\operatorname{cosec} \theta+\cot ^{2} \theta}{1+\operatorname{cosec} \theta}$
$=\frac{\left(1+\frac{1}{\sin \theta}+\frac{\cos ^{2} \theta}{\sin ^{2} \theta}\right)}{\left(1+\frac{1}{\sin \theta}\right)}$
$=\frac{\left(\frac{\sin ^{2} \theta+\sin \theta+\cos ^{2} \theta}{\sin ^{2} \theta}\right)}{\left(\frac{\sin \theta+1}{\sin \theta}\right)}$
Further, using the property $\sin ^{2} \theta+\cos ^{2} \theta=1$, we get
$\frac{\left(\frac{\sin ^{2} \theta+\sin \theta+\cos ^{2} \theta}{\sin ^{2} \theta}\right)}{\left(\frac{\sin \theta+1}{\sin \theta}\right)}=\frac{\left(\frac{1+\sin \theta}{\sin ^{2} \theta}\right)}{\left(\frac{\sin \theta+1}{\sin \theta}\right)}$
$=\left(\frac{1+\sin \theta}{\sin ^{2} \theta}\right)\left(\frac{\sin \theta}{1+\sin \theta}\right)$
$=\frac{1}{\sin \theta}$
$=\operatorname{cosec} \theta$
Hence proved.