Prove the following trigonometric identities.
(i) $\left(\frac{1+\sin \theta-\cos \theta}{1+\sin \theta+\cos \theta}\right)^{2}=\frac{1-\cos \theta}{1+\cos \theta}$
(ii) $\frac{1+\sec \theta-\tan \theta}{1+\sec \theta+\tan \theta}=\frac{1-\sin \theta}{\cos \theta}$
(i) In the given question, we need to prove $\left(\frac{1+\sin \theta-\cos \theta}{1+\sin \theta+\cos \theta}\right)^{2}=\frac{1-\cos \theta}{1+\cos \theta}$
Taking $\sin \theta$ common from the numerator and the denominator of the L.H.S, we get
$\left(\frac{1+\sin \theta-\cos \theta}{1+\sin \theta+\cos \theta}\right)^{2}=\left(\frac{(\sin \theta)(\operatorname{cosec} \theta+1-\cot \theta)}{(\sin \theta)(\operatorname{cosec} \theta+1+\cot \theta)}\right)^{2}$
$=\left(\frac{1+\operatorname{cosec} \theta-\cot \theta}{1+\operatorname{cosec} \theta+\cot \theta}\right)^{2}$
Now, using the property $1+\cot ^{2} \theta=\operatorname{cosec}^{2} \theta$, we get
$\left(\frac{1+\operatorname{cosec} \theta-\cot \theta}{1+\operatorname{cosec} \theta+\cot \theta}\right)^{2}=\left(\frac{\left(\operatorname{cosec}^{2} \theta-\cot ^{2} \theta\right)+\operatorname{cosec} \theta-\cot \theta}{1+\operatorname{cosec} \theta+\cot \theta}\right)^{2}$
Using $a^{2}-b^{2}=(a+b)(a-b)$, we get
$\left(\frac{\left(\operatorname{cosec}^{2} \theta-\cot ^{2} \theta\right)+\operatorname{cosec} \theta-\cot \theta}{1+\operatorname{cosec} \theta+\cot \theta}\right)^{2}=\left(\frac{(\operatorname{cosec} \theta+\cot \theta)(\operatorname{cosec} \theta-\cot \theta)+(\operatorname{cosec} \theta-\cot \theta)}{1+\operatorname{cosec} \theta+\cot \theta}\right)^{2}$
Taking $\operatorname{cosec} \theta-\cot \theta \operatorname{common}$ from the numerator, we get
$\left(\frac{(\operatorname{cosec} \theta+\cot \theta)(\operatorname{cosec} \theta-\cot \theta)+\operatorname{cosec} \theta-\cot \theta}{1+\operatorname{cosec} \theta+\cot \theta}\right)^{2}=\left(\frac{(\operatorname{cosec} \theta-\cot \theta)(\operatorname{cosec} \theta+\cot \theta+1)}{1+\operatorname{cosec} \theta+\cot \theta}\right)^{2}$
$=(\operatorname{cosec} \theta-\cot \theta)^{2}$
Using $\cot \theta=\frac{\cos \theta}{\sin \theta}$ and $\operatorname{cosec} \theta=\frac{1}{\sin \theta}$, we get
$(\operatorname{cosec} \theta-\cot \theta)^{2}=\left(\frac{1}{\sin \theta}-\frac{\cos \theta}{\sin \theta}\right)^{2}$
$=\left(\frac{1-\cos \theta}{\sin \theta}\right)^{2}$
$=\frac{(1-\cos \theta)^{2}}{\sin ^{2} \theta}$
Now, using the property $\sin ^{2} \theta+\cos ^{2} \theta=1$, we get
$\frac{(1-\cos \theta)^{2}}{\sin ^{2} \theta}=\frac{(1-\cos \theta)^{2}}{1-\cos ^{2} \theta}$
$=\frac{(1-\cos \theta)^{2}}{(1+\cos \theta)(1-\cos \theta)}$
$=\frac{1-\cos \theta}{1+\cos \theta}$
Hence proved.
(ii)
Consider the LHS.
$\frac{1+\sec \theta-\tan \theta}{1+\sec \theta+\tan \theta}$
$=\frac{(\sec \theta-\tan \theta)+1}{1+\sec \theta+\tan \theta}$
$=\frac{(\sec \theta-\tan \theta)+\left(\sec ^{2} \theta-\tan ^{2} \theta\right)}{1+\sec \theta}$ $\left(\sec ^{2} \theta-\tan ^{2} \theta=1\right)$
$=\frac{(\sec \theta-\tan \theta)(1+\sec \theta+\tan \theta)}{1+\sec \theta+\tan \theta}$
$=\sec \theta-\tan \theta$
$=\frac{1}{\cos \theta}-\frac{\sin \theta}{\cos \theta}$
$=\frac{1-\sin \theta}{\cos \theta}$
= RHS
Hence proved.