Prove the following trigonometric identities.

Question:

Prove the following trigonometric identities.

$\sin ^{2} A \cot ^{2} A+\cos ^{2} A \tan ^{2} A=1$

Solution:

We have to prove $\sin ^{2} A \cot ^{2} A+\cos ^{2} A \tan ^{2} A=1$

We know that, $\sin ^{2} A+\cos ^{2} A=1$

So,

$\sin ^{2} A \cot ^{2} A+\cos ^{2} A \tan ^{2} A=\sin ^{2} A \frac{\cos ^{2} A}{\sin ^{2} A}+\cos ^{2} A \frac{\sin ^{2} A}{\cos ^{2} A}$

$=\cos ^{2} A+\sin ^{2} A$

$=1$

Leave a comment