Question:
Prove the following trigonometric identities.
$\left(1+\tan ^{2} \theta\right)(1-\sin \theta)(1+\sin \theta)=1$
Solution:
We have to prove $\left(1+\tan ^{2} \theta\right)(1-\sin \theta)(1+\sin \theta)=1$
We know that,
$\sin ^{2} \theta+\cos ^{2} \theta=1$
$\sec ^{2} \theta-\tan ^{2} \theta=1$
So,
$\left(1+\tan ^{2} \theta\right)(1-\sin \theta)(1+\sin \theta)=\left(1+\tan ^{2} \theta\right)\{(1-\sin \theta)(1+\sin \theta)\}$
$=\left(1+\tan ^{2} \theta\right)\left(1-\sin ^{2} \theta\right)$
$=\sec ^{2} \theta \cos ^{2} \theta$
$=\frac{1}{\cos ^{2} \theta} \cos ^{2} \theta$
$=1$