Question:
Prove the following trigonometric identities.
$(\operatorname{cosec} \theta+\sin \theta)(\operatorname{cosec} \theta-\sin \theta)=\cot ^{2} \theta+\cos ^{2} \theta$
Solution:
We have to prove $(\operatorname{cosec} \theta+\sin \theta)(\operatorname{cosec} \theta-\sin \theta)=\cot ^{2} \theta+\cos ^{2} \theta$
We know that,
$\sin ^{2} \theta+\cos ^{2} \theta=1$
$\operatorname{cosec}^{2} \theta-\cot ^{2} \theta=1$
So,
$(\operatorname{cosec} \theta+\sin \theta)(\operatorname{cosec} \theta-\sin \theta)=\operatorname{cosec}^{2} \theta-\sin ^{2} \theta$
$=\left(1+\cot ^{2} \theta\right)-\left(1-\cos ^{2} \theta\right)$
$=1+\cot ^{2} \theta-1+\cos ^{2} \theta$
$=\cot ^{2} \theta+\cos ^{2} \theta$