Prove the following trigonometric identities.
$\frac{\sec A-\tan A}{\sec A+\tan A}=\frac{\cos ^{2} A}{(1+\sin A)^{2}}$
We need to prove $\frac{\sec A-\tan A}{\sec A+\tan A}=\frac{\cos ^{2} A}{(1+\sin A)^{2}}$
Here, we will first solve the LHS.
Now, using $\sec \theta=\frac{1}{\cos \theta}$ and $\tan \theta=\frac{\sin \theta}{\cos \theta}$, we get
$\frac{\sec A-\tan A}{\sec A+\tan A}=\frac{\frac{1}{\cos A}-\frac{\sin A}{\cos A}}{\frac{1}{\cos A}+\frac{\sin A}{\cos A}}$
$=\frac{\frac{1-\sin A}{\cos A}}{\frac{1+\sin A}{\cos A}}$
$=\frac{1-\sin A}{1+\sin A}$
Further, multiplying both numerator and denominator by $1+\sin A$, we get
$\frac{1-\sin A}{1+\sin A}=\left(\frac{1-\sin A}{1+\sin A}\right)\left(\frac{1+\sin A}{1+\sin A}\right)$
$=\frac{(1-\sin A)(1+\sin A)}{(1+\sin A)^{2}}$
$=\frac{1-\sin ^{2} A}{(1+\sin A)^{2}}$
Now, using the property $\cos ^{2} \theta+\sin ^{2} \theta=1$, we get
So,
$\frac{1-\sin ^{2} A}{(1+\sin A)^{2}}=\frac{\cos ^{2} A}{(1+\sin A)^{2}}=\mathrm{RHS}$
Hence proved.