Prove the following trigonometric identities.

Question:

Prove the following trigonometric identities.

if $\cos A+\cos ^{2} A=1$, prove that $\sin ^{2} A+\sin ^{4} A=1$

Solution:

Given: $\cos A+\cos ^{2} A=1$

We have to prove $\sin ^{2} A+\sin ^{4} A=1$

Now,

$\cos A+\cos ^{2} A=1$

$\Rightarrow \quad \cos A=1-\cos ^{2} A$

$\Rightarrow \quad \cos A=\sin ^{2} A$

 

$\Rightarrow \quad \sin ^{2} A=\cos A$

Therefore, we have

$\sin ^{2} A+\sin ^{4} A=\cos A+(\cos A)^{2}$

$=\cos A+\cos ^{2} A$

 

$=1$

Hence proved.

Leave a comment