Prove the following trigonometric identities.

Question:

Prove the following trigonometric identities.

$\left(\sec ^{2} \theta-1\right)\left(\operatorname{cosec}^{2} \theta-1\right)=1$

Solution:

We know that,

$\sec ^{2} \theta-\tan ^{2} \theta=1$

$\operatorname{cosec}^{2} \theta-\cot ^{2} \theta=1$

So,

$\left(\sec ^{2} \theta-1\right)\left(\operatorname{cosec}^{2} \theta-1\right)=\tan ^{2} \theta \times \cot ^{2} \theta$

$=(\tan \theta \times \cot \theta)^{2}$

$=\left(\tan \theta \times \frac{1}{\tan \theta}\right)^{2}$

$=(1)^{2}$

$=1$

 

Leave a comment