Question:
Prove the following trigonometric identities.
$\sin ^{2} A+\frac{1}{1+\tan ^{2} A}=1$
Solution:
We know that,
$\sin ^{2} A+\cos ^{2} A=1$
$\sec ^{2} A-\tan ^{2} A=1$
So,
$\sin ^{2} A+\frac{1}{1+\tan ^{2} A}=\sin ^{2} A+\frac{1}{\sec ^{2} A}$
$=\sin ^{2} A+\left(\frac{1}{\sec A}\right)^{2}$
$=\sin ^{2} A+(\cos A)^{2}$
$=\sin ^{2} A+\cos ^{2} A$
$=1$