Question:
Prove the following trigonometric identities.
$(\sec \theta+\cos \theta)(\sec \theta-\cos \theta)=\tan ^{2} \theta+\sin ^{2} \theta$
Solution:
We have to prove $(\sec \theta+\cos \theta)(\sec \theta-\cos \theta)=\tan ^{2} \theta+\sin ^{2} \theta$
We know that,
$\sin ^{2} \theta+\cos ^{2} \theta=1$
$\sec ^{2} \theta-\tan ^{2} \theta=1$
$(\sec \theta+\cos \theta)(\sec \theta-\cos \theta)=\sec ^{2} \theta-\cos ^{2} \theta$
$=\left(1+\tan ^{2} \theta\right)-\left(1-\sin ^{2} \theta\right)$
$=1+\tan ^{2} \theta-1+\sin ^{2} \theta$
$=\tan ^{2} \theta+\sin ^{2} \theta$