Prove the following trigonometric identities.
$(1+\cot A-\operatorname{cosec} A)(1+\tan A+\sec A)=2$
We have to prove $(1+\cot A-\operatorname{cosec} A)(1+\tan A+\sec A)=2$
We know that, $\sin ^{2} A+\cos ^{2} A=1$.
So,
$(1+\cot A-\operatorname{cosec} A)(1+\tan A+\sec A)=\left(1+\frac{\cos A}{\sin A}-\frac{1}{\sin A}\right)\left(1+\frac{\sin A}{\cos A}+\frac{1}{\cos A}\right)$
$=\left(\frac{\sin A+\cos A-1}{\sin A}\right)\left(\frac{\cos A+\sin A+1}{\cos A}\right)$
$=\frac{(\sin A+\cos A-1)(\sin A+\cos A+1)}{\sin A \cos A}$
$=\frac{\{(\sin A+\cos A)-1\}\{(\sin A+\cos A)+1\}}{\sin A \cos A}$
$=\frac{(\sin A+\cos A)^{2}-1}{\sin A \cos A}$
$=\frac{\sin ^{2} A+2 \sin A \cos A+\cos ^{2} A-1}{\sin A \cos A}$
$=\frac{\left(\sin ^{2} A+\cos ^{2} A\right)+2 \sin A \cos A-1}{\sin A \cos A}$
$=\frac{1+2 \sin A \cos A-1}{\sin A \cos A}$
$=\frac{2 \sin A \cos A}{\sin A \cos A}$
$=2$
Hence proved.