Prove the following trigonometric identities.

Question:

Prove the following trigonometric identities.

$\cos ^{2} A+\frac{1}{1+\cot ^{2} A}=1$

Solution:

We know that,

$\sin ^{2} A+\cos ^{2} A=1$

 

$\operatorname{cosec}^{2} A-\cot ^{2} A=1$

So,

$\cos ^{2} A+\frac{1}{1+\cot ^{2} A}=\cos ^{2} A+\frac{1}{\operatorname{cosec}^{2} A}$

$=\cos ^{2} A+\left(\frac{1}{\operatorname{cosec} A}\right)^{2}$

$=\cos ^{2} A+(\sin A)^{2}$

 

$=\cos ^{2} A+\sin ^{2} A$

$=1$

Leave a comment