Prove the following trigonometric identities.
If $x=a \cos ^{3} \theta, y=b \sin ^{3} \theta$, prove that $\left(\frac{x}{a}\right)^{2 / 3}+\left(\frac{y}{b}\right)^{2 / 3}=1$
Given:
$x=a \cos ^{3} \theta$
$\Rightarrow \frac{x}{a}=\cos ^{3} \theta$
$x=b \sin ^{3} \theta$
$\Rightarrow \frac{y}{b}=\sin ^{3} \theta$
We have to prove $\left(\frac{x}{a}\right)^{2 / 3}+\left(\frac{y}{b}\right)^{2 / 3}=1$
We know that $\sin ^{2} \theta+\cos ^{2} \theta=1$
So, we have
$\left(\frac{x}{a}\right)^{2 / 3}+\left(\frac{y}{b}\right)^{2 / 3}=\left(\cos ^{3} \theta\right)^{2 / 3}+\left(\sin ^{3} \theta\right)^{2 / 3}$
$\Rightarrow \quad\left(\frac{x}{a}\right)^{2 / 3}+\left(\frac{y}{b}\right)^{2 / 3}=\cos ^{2} \theta+\sin ^{2} \theta$
$\Rightarrow \quad\left(\frac{x}{a}\right)^{2 / 3}+\left(\frac{y}{b}\right)^{2 / 3}=1$
Hence proved.